Determinant

Linear Algebra

Department of Computer Engineering
Sharif University of Technology

Hamid R. Rabiee rabiee@sharif.edu
Maryam Ramezani maryam.ramezani@sharif.edu

Overview

Introduction

Bilinear Form:
 Review and Continue

Multilinear Form

Matrix Determinant

Determinant Properties

Introduction

The determinant of a 2×2 matrix $A=\left[a_{i j}\right]$ is the number: Why???

$$
\operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21}
$$

The absolute value of the determinant of a matrix measures how much it expands space when acting as a linear transformation. That is, it is the area (or volume, or hypervolume, depending on the dimension) of the output of the unit square, cube, or hypercube after it is acted upon by the matrix.

Geometric interpretation

The volume is a n-alternating multilinear map on all n parallelepipeds such that the volume of standard unit parallelepiped is one.
volume of output region
volume of input region

A 2×2 matrix A stretches the unit square (with sides e_{1} and e_{2}) into a parallelogram with sides $A e_{1}$ and $A e_{2}$ (the columns of A). The determinant of A is the area of this parallelogram.

Geometric interpretation

Determinants as Area or Volume

- If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $\operatorname{det}(A)$
- If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $\operatorname{det}(A)$
- Examples on board!

$$
\text { Volume of }\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] ? ?
$$

Volume

- Every n-dimensional parallelepiped with $\left\{a_{1}, \ldots, a_{n}\right\}$ as legs is associated with a real number, called its volume which has the following properties:
- If we stretch a parallelepiped by multiplying one of its legs by a scalar λ, its volume gets multiplied by λ.
© If we add a vector w to i-th legs of a n-dimensional parallelepiped with $\left\{a_{1}, \ldots, a_{i}, a_{i+1}, \ldots, a_{n}\right\}$, then its volume is the sum of the volume from $\left\{a_{1}, \ldots, a_{i-1}, a_{i}, a_{i+1}, \ldots, a_{n}\right\}$ and the volume of $\left\{a_{1}, \ldots, a_{i-1}, w, a_{i+1}, \ldots, a_{n}\right\}$.
- The volume changes sign when two legs are exchanged.
- The volume of the parallelepiped with $\left\{e_{1}, \ldots, e_{n}\right\}$ is one.

$$
\phi: \underbrace{V \times \cdots \times V}_{n} \rightarrow \mathbb{R}
$$

Bilinear Form:
 Review and Continue

Definition
Suppose V and W are vector spaces over the same field \mathbb{C}. Then a function $\alpha: V \times W \rightarrow \mathbb{C}$ is called a bilinear form if it satisfies the following properties:
a) It is linear in its first argument:
i. $\alpha\left(\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{2}, \mathbf{w}\right)=\alpha\left(\mathbf{v}_{1}, \mathbf{w}\right)+\alpha\left(\mathbf{v}_{\mathbf{2}}, \mathbf{w}\right)$ and
ii. $\alpha\left(\lambda \mathbf{v}_{\mathbf{1}}, \mathbf{w}\right)=\lambda \alpha\left(\mathbf{v}_{\mathbf{1}}, \mathbf{w}\right)$ for all $\lambda \in \mathbb{C}, \mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}} \in V$, and $\mathbf{w} \in W$.
b) It is conjugate linear in its second argument:
i. $\alpha\left(\mathbf{v}, \mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}\right)=\alpha\left(\mathbf{v}, \mathbf{w}_{\mathbf{1}}\right)+\alpha\left(\mathbf{v}, \mathbf{w}_{\mathbf{2}}\right)$ and
ii. $\alpha\left(\mathbf{v}, \lambda \mathbf{w}_{1}\right)=\bar{\lambda} \alpha\left(\mathbf{v}, \mathbf{w}_{\mathbf{1}}\right)$ for all $\lambda \in \mathbb{C}, \mathbf{v} \in V$, and $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} \in W$.

The set of bilinear forms on \mathbf{v} is denoted by \mathbf{v}^{2}.

Alternating bilinear form

Definition

A bilinear form $\alpha \in V^{(2)}$ is called alternating if

$$
\alpha(v, v)=0
$$

for all $v \in V$. The set of alternating bilinear forms on V is denoted by $V_{\text {alt }}^{(2)}$.

Example

Suppose $\varphi, \tau \in V^{\prime}$. Then the bilinear form α on V defined by

$$
\alpha(u, w)=\varphi(u) \tau(w)-\varphi(w) \tau(u)
$$

Alternating bilinear form

Theorem

A bilinear form α on V is alternating if and only if

$$
\alpha(u, w)=-\alpha(w, u)
$$

for all $u, w \in V$.
Proof

Alternating bilinear form

Theorem

The sets $V_{\mathrm{sym}}^{(2)}$ and $V_{\mathrm{alt}}^{(2)}$ are subspaces of $V^{(2)}$. Furthermore,

$$
V^{(2)}=V_{\mathrm{sym}}^{(2)} \oplus V_{\mathrm{alt}}^{(2)} .
$$

Proof

Multilinear Form

Multilinear Forms

Definition

Suppose $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{p}$ are vector spaces over the same field F. A function

$$
f: v_{1} \times v_{2} \times \cdots \times v_{p} \rightarrow \mathbb{F}
$$

is called a multilinear form if, for each $1 \leq j \leq p$ and each $\mathrm{v}_{1} \in \mathcal{V}_{1}, \mathrm{v}_{2}$
$\in \mathcal{V}_{2}, \ldots, \mathrm{v}_{p} \in \mathcal{V}_{p}$, it is the case that the function $g: \mathcal{V}_{j} \rightarrow \mathbb{F}$ defined by

$$
g(v)=f\left(v_{1}, \ldots, v_{j-1}, v, v_{j+1}, \ldots, v_{p}\right) \quad \text { for all } v \in v_{j}
$$

is a linear form.

Example

Suppose $\alpha, \rho \in V^{(2)}$. Define a function $\beta: V^{4} \rightarrow \mathbf{F}$ by

$$
\beta\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=\alpha\left(v_{1}, v_{2}\right) \rho\left(v_{3}, v_{4}\right) .
$$

Multilinear Forms

Definition

Suppose m is a positive integer.

- An m-linear form α on V is called alternating if $\alpha\left(v_{1}, \ldots, v_{m}\right)=0$ whenever v_{1}, \ldots, v_{m} is a list of vectors in V with $v_{j}=v_{k}$ for some two distinct values of j and k in $\{1, \ldots, m\}$.
- $V_{\text {alt }}^{(m)}=\left\{\alpha \in V^{(m)}: \alpha\right.$ is an alternating m-linear form on $\left.V\right\}$.
$V_{\text {alt }}^{(m)}$ is a subspace of $V^{(m)}$.

Theorem

An indexed set $S=\left\{v_{1}, \ldots, v_{n}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and $v_{1} \neq 0$, then some v_{j} (with $j>1$) is a linear combination of the preceding vectors, v_{1}, \ldots, v_{j-1}.

Proof

\square Does not say that every vector
\square Does not say that every vector in a linearly dependent set is a linear combination of the preceding vectors. A vector in a linearly dependent set may fail to be a linear combination of the other vectors.

Alternating multilinear forms and linear dependence

Theorem

Suppose m is a positive integer and α is an alternating m-linear form on V. If v_{1}, \ldots, v_{m} is a linearly dependent list in V, then

$$
\alpha\left(v_{1}, \ldots, v_{m}\right)=0 .
$$

no nonzero alternating m-linear forms for $m>\operatorname{dim} V$

Theorem

Suppose $m>\operatorname{dim} V$. Then 0 is the only alternating m-linear form on V.

Proof

Theorem

Suppose m is a positive integer, α is an alternating m-linear form on V, and v_{1}, \ldots, v_{m} is a list of vectors in V. Then swapping the vectors in any two slots of $\alpha\left(v_{1}, \ldots, v_{m}\right)$ changes the value of α by a factor of -1 .

Proof

Definition

Suppose m is a positive integer.

- A permutation of $(1, \ldots, m)$ is a list $\left(j_{1}, \ldots, j_{m}\right)$ that contains each of the numbers $1, \ldots, m$ exactly once.
- The set of all permutations of $(1, \ldots, m)$ is denoted by perm m.

Permutation

Definition

The sign of a permutation $\left(j_{1}, \ldots, j_{m}\right)$ is defined by

$$
\operatorname{sign}\left(j_{1}, \ldots, j_{m}\right)=(-1)^{N}
$$

where N is the number of pairs of integers (k, ℓ) with $1 \leq k<\ell \leq m$ such that k appears after ℓ in the list $\left(j_{1}, \ldots, j_{m}\right)$.

Example

- The permutation $(1, \ldots, m)$ [no changes in the natural order] has sign 1.
- The only pair of integers (k, ℓ) with $k<\ell$ such that k appears after ℓ in the list $(2,1,3,4)$ is $(1,2)$. Thus the permutation $(2,1,3,4)$ has sign -1 .
- In the permutation $(2,3, \ldots, m, 1)$, the only pairs (k, ℓ) with $k<\ell$ that appear with changed order are $(1,2),(1,3), \ldots,(1, m)$. Because we have $m-1$ such pairs, the sign of this permutation equals $(-1)^{m-1}$.

Swapping two entries in a permutation

Theorem

Swapping two entries in a permutation multiplies the sign of the permutation by -1 .

Proof

Permutations and alternating multilinear forms

Theorem

Suppose m is a positive integer and $\alpha \in V_{\text {alt }}^{(m)}$. Then

$$
\alpha\left(v_{j_{1}}, \ldots, v_{j_{m}}\right)=\left(\operatorname{sign}\left(j_{1}, \ldots, j_{m}\right)\right) \alpha\left(v_{1}, \ldots, v_{m}\right)
$$

for every list v_{1}, \ldots, v_{m} of vectors in V and all $\left(j_{1}, \ldots, j_{m}\right) \in \operatorname{perm} m$.
Proof

Theorem

Let $n=\operatorname{dim} V$. Suppose e_{1}, \ldots, e_{n} is a basis of V and $v_{1}, \ldots, v_{n} \in V$. For each $k \in\{1, \ldots, n\}$, let $b_{1, k}, \ldots, b_{n, k} \in \mathbf{F}$ be such that

$$
v_{k}=\sum_{j=1}^{n} b_{j, k} e_{j}
$$

$$
v_{1}=\left[\begin{array}{l}
a \\
b
\end{array}\right], v_{2}=\left[\begin{array}{l}
c \\
d
\end{array}\right]
$$

Then

$$
\alpha\left(v_{1}, \ldots, v_{n}\right)=\alpha\left(e_{1}, \ldots, e_{n}\right) \sum_{\left(j_{1}, \ldots, j_{n}\right) \in \operatorname{perm} n}\left(\operatorname{sign}\left(j_{1}, \ldots, j_{n}\right)\right) b_{j_{1}, 1} \cdots b_{j_{n}, n}
$$

for every alternating n-linear form α on V.

Theorem

The vector space $V_{\text {alt }}^{(\operatorname{dim} V)}$ has dimension one.

Proof

Nonzero alternating n-linear form α on V

Theorem

$$
\alpha\left(v_{1}, \ldots, v_{n}\right)=\sum_{\left(j_{1}, \ldots, j_{n}\right) \in \operatorname{permn}}\left(\operatorname{sign}\left(j_{1}, \ldots, j_{n}\right)\right) \varphi_{j_{1}}\left(v_{1}\right) \cdots \varphi_{j_{n}}\left(v_{n}\right)
$$

The verification that α is an n-linear form on V is straightforward.

$$
\alpha\left(e_{1}, . ., e_{n}\right)=1
$$

Matrix Determinant

Determinant

Definition

Suppose that m is a positive integer and $T \in \mathcal{L}(V)$. For $\alpha \in V_{\text {alt }}^{(m)}$, define $\alpha_{T} \in V_{\text {alt }}^{(m)}$ by

$$
\alpha_{T}\left(v_{1}, \ldots, v_{m}\right)=\alpha\left(T v_{1}, \ldots, T v_{m}\right)
$$

for each list v_{1}, \ldots, v_{m} of vectors in V.

$$
\alpha_{T}=(\operatorname{det} T) \alpha
$$

Determinant is an alternating multilinear form

Theorem

Suppose that n is a positive integer. The map that takes a list v_{1}, \ldots, v_{n} of vectors in \mathbf{F}^{n} to $\operatorname{det}\left(\begin{array}{lll}v_{1} & \cdots & v_{n}\end{array}\right)$ is an alternating n-linear form on \mathbf{F}^{n}.

Proof Let e_{1}, \ldots, e_{n} be the standard basis of \mathbf{F}^{n} and suppose v_{1}, \ldots, v_{n} is a list of vectors in \mathbf{F}^{n}. Let $T \in \mathcal{L}\left(\mathbf{F}^{n}\right)$ be the operator such that $T e_{k}=v_{k}$ for $k=1, \ldots, n$. Thus T is the operator whose matrix with respect to e_{1}, \ldots, e_{n} is $\left(\begin{array}{ccc}v_{1} & \cdots & v_{n}\end{array}\right)$. Hence $\operatorname{det}\left(\begin{array}{ccc}v_{1} & \cdots & v_{n}\end{array}\right)=\operatorname{det} T$, by definition of the determinant of a matrix.

Let α be an alternating n-linear form on \mathbf{F}^{n} such that $\alpha\left(e_{1}, \ldots, e_{n}\right)=1$. Then

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right) & =\operatorname{det} T \\
& =(\operatorname{det} T) \alpha\left(e_{1}, \ldots, e_{n}\right) \\
& =\alpha\left(T e_{1}, \ldots, T e_{n}\right) \\
& =\alpha\left(v_{1}, \ldots, v_{n}\right),
\end{aligned}
$$

where the third line follows from the definition of the determinant of an operator. The equation above shows that the map that takes a list of vectors v_{1}, \ldots, v_{n} in \mathbf{F}^{n} to $\operatorname{det}\left(\begin{array}{lll}v_{1} & \cdots & v_{n}\end{array}\right)$ is the alternating n-linear form α on \mathbf{F}^{n}.

Matrix Determinant

Theorem

Suppose that n is a positive integer and A is an n-by- n square matrix. Then

$$
\operatorname{det} A=\sum_{\left(j_{1}, \ldots, j_{n}\right) \in \operatorname{perm} n}\left(\operatorname{sign}\left(j_{1}, \ldots, j_{n}\right)\right) A_{j_{1},}, \cdots A_{j_{n}, n} .
$$

Proof

Definition of Submatrix $A_{i j}$

Definition

For any square matrix A, let $A_{i j}$ denote the submatrix formed by deleting the i th row and j th column of A

For instance, if
A_{12} is

$$
A_{12}=\left[\begin{array}{ccc}
2 & 4 & -1 \\
3 & 0 & 7 \\
0 & -2 & 0
\end{array}\right]
$$

Definition

The determinant of an $n \times n$ matrix $A=\left[a_{i j}\right]$ is the sum of n terms of the form $\pm a_{1 j} \operatorname{det}\left(A_{1 j}\right)$, with plus and minus signs alternating, where the entries $a_{11}, a_{12}, \ldots, a_{1 n}$ are from the first row of A. In symbols,

$$
\operatorname{det}(A)=a_{11} \operatorname{det}\left(A_{11}\right)-a_{12} \operatorname{det}\left(A_{12}\right)+\cdots
$$

$+(-1)^{1+n} a_{1 n} \operatorname{det}\left(A_{1 n}\right)$

$$
=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det}\left(A_{1 j}\right)
$$

$\square 2 \times 2$ matrix $\quad|A|=\sum_{j=1}^{n}(-1)^{i+j} a_{i j}\left|A_{i j}\right| \quad i=1$

$$
\begin{aligned}
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \rightarrow|A| & =(-1)^{1+1} a_{11}\left|A_{11}\right|+(-1)^{1+2} a_{12}\left|A_{12}\right| \\
& =a\left|\begin{array}{ll}
\square & \square \\
\square & d
\end{array}\right|-b\left|\begin{array}{cc}
\square & \square \\
c & \square
\end{array}\right| \\
& =a d-b c
\end{aligned}
$$

Example

$$
\left.\left.\right|_{-3} ^{-1} \begin{array}{ll}
1 & 2
\end{array} \right\rvert\,=(-1) \times(1)-(2) \times(-3)=5
$$

$\square \times 3$ matrix

$$
|A|=\sum_{j=1}^{n}(-1)^{i+j} a_{i j}\left|A_{i j}\right| \quad i=1
$$

$$
\begin{aligned}
A=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \rightarrow|A| & =(-1)^{1+1} a_{11}\left|A_{11}\right|+(-1)^{1+2} a_{12}\left|A_{12}\right|+(-1)^{1+3} a_{13}\left|A_{13}\right| \\
& =a\left|\begin{array}{ccc}
\square & \square & \square \\
\square & e & f
\end{array}\right|-b\left|\begin{array}{ccc}
\square & \square & \square \\
d & \square & f \\
g & \square & i
\end{array}\right|+c\left|\begin{array}{ccc}
\square & \square & \square \\
d & e & \square \\
g & h & \square
\end{array}\right| \\
& =a(e i-f h)-b(d i-f g)+c(d h-e g) \\
& =a e i+b f g+c d h-a f h-b d i-c e g
\end{aligned}
$$

Example

$$
\left|\begin{array}{ccc}
1 & 0 & 1 \\
2 & 5 & 4 \\
5 & 3 & -1
\end{array}\right|=-5+0+6-(25+12+0)=-36
$$

Definition

Given $A=\left[a_{i j}\right]$, the (i, j)-cofactor of A is the number $C_{i j}$ given by

$$
C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)
$$

Then

$$
\operatorname{det}(A)=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

Which is a cofactor expansion across the first row of A.

Cofactor Expansion

Important

The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or down any column. The expansion across the i th row using the cofactor is

$$
\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}
$$

The cofactor expansion down the j th column is

$$
\operatorname{det}(A)=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}
$$

Cofactor Expansion

Example

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
+ & - & + & \ldots \\
- & + & - & \ldots \\
+ & - & + & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right] \quad A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
2 & 5 & 4 \\
5 & 3 & -1
\end{array}\right] \\
&|A|=+1 \times\left|\begin{array}{cc}
5 & 4 \\
3 & -1
\end{array}\right|-0 \times\left|\begin{array}{cc}
2 & 4 \\
5 & -1
\end{array}\right|+1 \times\left|\begin{array}{cc}
2 & 5 \\
5 & 3
\end{array}\right|=-36 \\
&|A|=-0 \times\left|\begin{array}{cc}
2 & 4 \\
5 & -1
\end{array}\right|+5 \times\left|\begin{array}{cc}
1 & 1 \\
5 & -1
\end{array}\right|-3 \times\left|\begin{array}{cc}
1 & 1 \\
2 & 4
\end{array}\right|=-36
\end{aligned}
$$

Determinant Properties

Properties

- (1) If one row or column is zero, then determinant is zero

$$
\left|\begin{array}{lll}
0 & 0 & 0 \\
a & b & c \\
d & e & f
\end{array}\right|=0
$$

- Determinant of zero matrix is \cdots

$$
\begin{gathered}
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det}\left(A_{1 j}\right) \\
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} a_{i \sigma(i)}
\end{gathered}
$$

a (2) If two rows or columns of matrix are same, then determinant is zero.

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
1 & -2 & 3 \\
5 & 3 & -1
\end{array}\right] \\
|A|=+1 \times\left|\begin{array}{cc}
-2 & 3 \\
3 & -1
\end{array}\right|-(-2) \times\left|\begin{array}{cc}
1 & 3 \\
5 & -1
\end{array}\right|+3 \times\left|\begin{array}{cc}
1 & -2 \\
5 & 3
\end{array}\right| \\
|A|=-1 \times\left|\begin{array}{cc}
-2 & 3 \\
3 & -1
\end{array}\right|+(-2) \times\left|\begin{array}{cc}
1 & 3 \\
5 & -1
\end{array}\right|-3 \times\left|\begin{array}{cc}
1 & -2 \\
5 & 3
\end{array}\right|
\end{gathered}
$$

- (3) If two rows or columns of matrix are interchanged, the sign of determinant is changes!
- (4) $\operatorname{det}(I)=1$
- (5) Row and Column Operations
a If a multiple of one row/column of A is added to another row/column to produce a matrix B, then $\operatorname{det}(A)=\operatorname{det}(B)$.

Proof?
Example

$$
\left|\begin{array}{ccc}
1 & -1 & 2 \\
0 & 2 & -3 \\
0 & 0 & -2
\end{array}\right|=\left|\begin{array}{ccc}
1 & -1 & 2 \\
1 & 1 & -1 \\
1 & -1 & 0
\end{array}\right|=\left|\begin{array}{ccc}
1 & -1 & 6 \\
1 & 1 & 3 \\
1 & -1 & 4
\end{array}\right|
$$

- (6) If A is a triangular matrix, then $\operatorname{det}(A)$ is the product of the entries on the main diagonal of A.

$$
\left|\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right|=a b c \quad\left|\begin{array}{lll}
a & 0 & 0 \\
d & b & 0 \\
e & f & c
\end{array}\right|=a b c
$$

- Determinant of identity matrix is \cdots
- $\quad U$ is unitary, so that $|\operatorname{det}(U)|=I$
- (7) If a column or row is multiply to k then determinant is multiply to k.

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right|=a_{11} C_{11}+\cdots+a_{1 n} C_{1 n} \\
& \left|\begin{array}{ccc}
k a_{11} & \ldots & k a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right|=k a_{11} C_{11}+\cdots+k a_{1 n} C_{1 n}=k\left|\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right|
\end{aligned}
$$

- $\left|k A_{n \times n}\right|=k^{n}\left|A_{n \times n}\right|$
- (8) If a row/column is multiple of another row/column then determinant is \cdots..
- (9) If columns/rows of matrix are linear dependent then its determinant is zero
- (10) If columns/rows of matrix are linear dependent if and only if its determinant is zero.

Theorem

Theorem

A square matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$

Example

Compute $\operatorname{det}(A)$, where $A=\left[\begin{array}{cccc}3 & -1 & 2 & -5 \\ 0 & 5 & -3 & -6 \\ -6 & 7 & -7 & 4 \\ -5 & -8 & 0 & 9\end{array}\right]$

Note

Row operations

Let A be a square matrix.
a. If a multiple of one row of A is added to another row to produce a matrix
B, then $\operatorname{det}(B)=\operatorname{det}(A)$
b. If two rows of A are interchanged to produce B, then $\operatorname{det}(B)=-\operatorname{det}(A)$
c. If one row of A is multiplied by k to produce B, then $\operatorname{det}(B)=k \cdot \operatorname{det}(A)$

Echelon form

Example

Compute $\operatorname{det}(A)$, where $A=\left[\begin{array}{ccc}1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0\end{array}\right]$

Theorem
if A is an $n \times n$ matrix, then $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$

Multiplicative Property

Theorem
if A and B are $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$

Important

In general, $\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$
The determinant of the inverse of an invertible matrix is the inverse of the determinant

$$
A A^{-1}=I \Rightarrow\left|A A^{-1}\right|=|I|=1 \Rightarrow|A|\left|A^{-1}\right|=1 \Rightarrow\left|A^{-1}\right|=|A|^{-1}
$$

The determinant of orthogonal matrix is ...

- $A x=B$ and A is invertible

$$
A=\left[\begin{array}{lll}
a_{1} & \ldots & a_{n}
\end{array}\right] \quad I=\left[\begin{array}{lll}
e_{1} & \ldots & e_{n}
\end{array}\right]
$$

$$
\begin{aligned}
& A I=A \Rightarrow A\left[\begin{array}{lll}
e_{1} & \ldots & e_{n}
\end{array}\right]=\left[\begin{array}{lll}
A e_{1} & \ldots & A e_{n}
\end{array}\right]=\left[\begin{array}{lll}
a_{1} & \ldots & a_{n}
\end{array}\right] \\
& A \overbrace{\left[\begin{array}{llllll}
e_{1} & e_{2} & \ldots & x & \cdots & e_{n}
\end{array}\right]}^{I_{j}(x)}=\left[\begin{array}{llllll}
A e_{1} & A e_{2} & \ldots & A x & \cdots & A e_{n}
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{llllll}
a_{1} & a_{2} & \ldots & b & \cdots & a_{n}
\end{array}\right]}_{A_{j}(b)} \\
& \left|I_{2}(x)\right|=\left|\begin{array}{lll}
1 & x_{1} & 0 \\
0 & x_{2} & 0 \\
0 & x_{3} & 1
\end{array}\right|=x_{2} \Rightarrow\left|I_{j}(x)\right|=x_{j} \\
& A I_{j}(x)=A_{j}(b) \Rightarrow|A|\left|I_{j}(x)\right|=\left|A_{j}(b)\right| \Rightarrow x_{j}=\frac{\left|A_{j}(b)\right|}{|A|}
\end{aligned}
$$

Cramer's Rule

Note

Let A be an invertible $n \times n$ matrix. For any \mathbf{b} in \mathbb{R}^{n}, the unique solution \mathbf{x} of $A \mathbf{x}=\mathbf{b}$ has entries given by

$$
x_{i}=\frac{\left|A_{i}(\mathbf{b})\right|}{|A|}, \quad i=1,2, \ldots, n
$$

Example

$$
\left\{\begin{array}{c}
x_{1}-x_{2}+2 x_{3}=1 \\
x_{1}+x_{2}-x_{3}=2 \\
2 x_{1}-3 x_{2}+x_{3}=-1
\end{array} \quad \Rightarrow x_{2}=\frac{\left|\begin{array}{ccc}
1 & 1 & 2 \\
1 & 2 & -1 \\
2 & -1 & 1
\end{array}\right|}{\left|\begin{array}{ccc}
1 & -1 & 2 \\
1 & 1 & -1 \\
2 & -3 & 1
\end{array}\right|}=\frac{-12}{-3}=4\right.
$$

A Formula for $\boldsymbol{A}^{\mathbf{- 1}}$

The j-th column of A^{-1} is a vector x that satisfies $\quad A x=e_{j}$
By Cramer's rule

$$
\begin{gathered}
\left\{(\mathrm{i}, \mathrm{j})-\text { entry of } A^{-1}\right\}=x_{i}=\frac{\left|A_{i}\left(e_{j}\right)\right|}{|A|} \\
\left|A_{i}\left(e_{j}\right)\right|=(-1)^{i+j}\left|A_{j i}\right| \\
A^{-1}=\frac{1}{|A|}\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
C_{1 n} & C_{2 n} & \cdots & C_{n n}
\end{array}\right]
\end{gathered}
$$

The matrix of cofactors is called the adjugate (or classical adjoint) of A, denoted by adj A.

$$
\begin{aligned}
& =\bar{i}^{0}
\end{aligned}
$$

Important

Let A be an invertible $n \times n$ matrix. Then

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A
$$

Transformations

Example

Show that the determinant, $\operatorname{det}: \mathcal{M}_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ is not a linear transformation when $n \geq 2$

Note

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation determined by a 2×2 matrix A. If
S is a parallelogram in \mathbb{R}^{2}, then

$$
\{\text { area of } T(S)\}=|\operatorname{det} A| \cdot\{\text { area of } S\}
$$

If T is determined by a 3×3 matrix A, and if S is a parallelepiped in \mathbb{R}^{3}, then

$$
\{\text { volume of } T(S)\}=|\operatorname{det} A| \cdot\{\text { volume of } S\}
$$

- Chapter 3: Linear Algebra and Its Applications, David C. Lay.
- Chapter 9: Part B and C: Linear Algebra Done Right, Sheldon Axler.

